Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6696): eadf8458, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723072

RESUMO

Phonons play a crucial role in many properties of solid-state systems, and it is expected that topological phonons may lead to rich and unconventional physics. On the basis of the existing phonon materials databases, we have compiled a catalog of topological phonon bands for more than 10,000 three-dimensional crystalline materials. Using topological quantum chemistry, we calculated the band representations, compatibility relations, and band topologies of each isolated set of phonon bands for the materials in the phonon databases. Additionally, we calculated the real-space invariants for all the topologically trivial bands and classified them as atomic or obstructed atomic bands. We have selected more than 1000 "ideal" nontrivial phonon materials to motivate future experiments. The datasets were used to build the Topological Phonon Database.

3.
Nat Commun ; 15(1): 3069, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594296

RESUMO

Transitions between distinct obstructed atomic insulators (OAIs) protected by crystalline symmetries, where electrons form molecular orbitals centering away from the atom positions, must go through an intermediate metallic phase. In this work, we find that the intermediate metals will become a scale-invariant critical metal phase (CMP) under certain types of quenched disorder that respect the magnetic crystalline symmetries on average. We explicitly construct models respecting average C2zT, m, and C4zT and show their scale-invariance under chemical potential disorder by the finite-size scaling method. Conventional theories, such as weak anti-localization and topological phase transition, cannot explain the underlying mechanism. A quantitative mapping between lattice and network models shows that the CMP can be understood through a semi-classical percolation problem. Ultimately, we systematically classify all the OAI transitions protected by (magnetic) groups P m , P 2 ' , P 4 ' , and P 6 ' with and without spin-orbit coupling, most of which can support CMP.

4.
Nat Commun ; 15(1): 2670, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531879

RESUMO

The presence of topological flat minibands in moiré materials provides an opportunity to explore the interplay between topology and correlation. In this work, we study moiré minibands in topological insulator films with two hybridized surface states under a moiré superlattice potential created by two-dimensional insulating materials. We show the lowest conduction (highest valence) Kramers' pair of minibands can be Z 2 non-trivial when the minima (maxima) of moiré potential approximately form a hexagonal lattice with six-fold rotation symmetry. Coulomb interaction can drive the non-trivial Kramers' minibands into the quantum anomalous Hall state when they are half-filled, which is further stabilized by applying external gate voltages to break inversion. We propose the monolayer Sb2 on top of Sb2Te3 films as a candidate based on first principles calculations. Our work demonstrates the topological insulator based moiré heterostructure as a potential platform for studying interacting topological phases.

5.
Nat Commun ; 15(1): 1171, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331985

RESUMO

The topological phases of non-interacting fermions have been classified by their symmetries, culminating in a modern electronic band theory where wavefunction topology can be obtained from momentum space. Recently, Real Space Invariants (RSIs) have provided a spatially local description of the global momentum space indices. The present work generalizes this real space classification to interacting 2D states. We construct many-body local RSIs as the quantum numbers of a set of symmetry operators on open boundaries, but which are independent of the choice of boundary. Using the U(1) particle number, they yield many-body fragile topological indices, which we use to identify which single-particle fragile states are many-body topological or trivial at weak coupling. To this end, we construct an exactly solvable Hamiltonian with single-particle fragile topology that is adiabatically connected to a trivial state through strong coupling. We then define global many-body RSIs on periodic boundary conditions. They reduce to Chern numbers in the band theory limit, but also identify strongly correlated stable topological phases with no single-particle counterpart. Finally, we show that the many-body local RSIs appear as quantized coefficients of Wen-Zee terms in the topological quantum field theory describing the phase.

6.
Phys Rev Lett ; 131(16): 166501, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925696

RESUMO

We use the topological heavy fermion (THF) model and its Kondo lattice (KL) formulation to study the possibility of a symmetric Kondo (SK) state in twisted bilayer graphene. Via a large-N approximation, we find a SK state in the KL model at fillings ν=0,±1,±2 where a KL model can be constructed. In the SK state, all symmetries are preserved and the local moments are Kondo screened by the conduction electrons. At the mean-field level of the THF model at ν=0,±1,±2,±3 we also find a similar symmetric state that is adiabatically connected to the symmetric Kondo state. We study the stability of the symmetric state by comparing its energy with the ordered (symmetry-breaking) states found in [H. Hu et al., Phys. Rev. Lett. 131, 026502 (2023).PRLTAO0031-900710.1103/PhysRevLett.131.026502, Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett. 129, 047601 (2022).PRLTAO0031-900710.1103/PhysRevLett.129.047601] and find the ordered states to have lower energy at ν=0,±1,±2. However, moving away from integer fillings by doping the light bands, our mean-field calculations find the energy difference between the ordered state and the symmetric state to be reduced, which suggests the loss of ordering and a tendency toward Kondo screening. In order to include many-body effects beyond the mean-field approximation, we also performed dynamical mean-field theory calculations on the THF model in the nonordered phase. The spin susceptibility follows a Curie behavior at ν=0,±1,±2 down to ∼2 K where the onset of screening of the local moment becomes visible. This hints to very low Kondo temperatures at these fillings, in agreement with the outcome of our mean-field calculations. At noninteger filling ν=±0.5,±0.8,±1.2 dynamical mean-field theory shows deviations from a 1/T susceptibility at much higher temperatures, suggesting a more effective screening of local moments with doping. Finally, we study the effect of a C_{3z}-rotational-symmetry-breaking strain via mean-field approaches and find that a symmetric phase (that only breaks C_{3z} symmetry) can be stabilized at sufficiently large strain at ν=0,±1,±2. Our results suggest that a symmetric Kondo phase is strongly suppressed at integer fillings, but could be stabilized either at noninteger fillings or by applying strain.

7.
Nat Commun ; 14(1): 6646, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863907

RESUMO

Geometrically frustrated kagome lattices are raising as novel platforms to engineer correlated topological electron flat bands that are prominent to electronic instabilities. Here, we demonstrate a phonon softening at the kz = π plane in ScV6Sn6. The low energy longitudinal phonon collapses at ~98 K and q = [Formula: see text] due to the electron-phonon interaction, without the emergence of long-range charge order which sets in at a different propagation vector qCDW = [Formula: see text]. Theoretical calculations corroborate the experimental finding to indicate that the leading instability is located at [Formula: see text] of a rather flat mode. We relate the phonon renormalization to the orbital-resolved susceptibility of the trigonal Sn atoms and explain the approximately flat phonon dispersion. Our data report the first example of the collapse of a kagome bosonic mode and promote the 166 compounds of kagomes as primary candidates to explore correlated flat phonon-topological flat electron physics.

8.
Nature ; 620(7974): 525-532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587297

RESUMO

Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that reflect electronic correlation effects, broken symmetries and collective excitations. Many quantum phases have been discovered in magic-angle twisted bilayer graphene (MATBG), including correlated insulating1, unconventional superconducting2-5 and magnetic topological6-9 phases. The lack of microscopic information10,11 of possible broken symmetries has hampered our understanding of these phases12-17. Here we use high-resolution scanning tunnelling microscopy to study the wavefunctions of the correlated phases in MATBG. The squares of the wavefunctions of gapped phases, including those of the correlated insulating, pseudogap and superconducting phases, show distinct broken-symmetry patterns with a √3 × âˆš3 super-periodicity on the graphene atomic lattice that has a complex spatial dependence on the moiré scale. We introduce a symmetry-based analysis using a set of complex-valued local order parameters, which show intricate textures that distinguish the various correlated phases. We compare the observed quantum textures of the correlated insulators at fillings of ±2 electrons per moiré unit cell to those expected for proposed theoretical ground states. In typical MATBG devices, these textures closely match those of the proposed incommensurate Kekulé spiral order15, whereas in ultralow-strain samples, our data have local symmetries like those of a time-reversal symmetric intervalley coherent phase12. Moreover, the superconducting state of MATBG shows strong signatures of intervalley coherence, only distinguishable from those of the insulator with our phase-sensitive measurements.

9.
Phys Rev Lett ; 131(2): 026502, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505959

RESUMO

We apply a generalized Schrieffer-Wolff transformation to the extended Anderson-like topological heavy fermion (THF) model for the magic-angle (θ=1.05°) twisted bilayer graphene (MATBLG) [Phys. Rev. Lett. 129, 047601 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.047601], to obtain its Kondo lattice limit. In this limit localized f electrons on a triangular lattice interact with topological conduction c electrons. By solving the exact limit of the THF model, we show that the integer fillings ν=0,±1,±2 are controlled by the heavy f electrons, while ν=±3 is at the border of a phase transition between two f-electron fillings. For ν=0,±1,±2, we then calculate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between the f moments in the full model and analytically prove the SU(4) Hund's rule for the ground state which maintains that two f electrons fill the same valley-spin flavor. Our (ferromagnetic interactions in the) spin model dramatically differ from the usual Heisenberg antiferromagnetic interactions expected at strong coupling. We show the ground state in some limits can be found exactly by employing a positive semidefinite "bond-operators" method. We then compute the excitation spectrum of the f moments in the ordered ground state, prove the stability of the ground state favored by RKKY interactions, and discuss the properties of the Goldstone modes, the (reason for the accidental) degeneracy of (some of) the excitation modes, and the physics of their phase stiffness. We develop a low-energy effective theory for the f moments and obtain analytic expressions for the dispersion of the collective modes. We discuss the relevance of our results to the spin-entropy experiments in TBG.

10.
Phys Rev Lett ; 130(23): 236601, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354423

RESUMO

Adding magnetic flux to a band structure breaks Bloch's theorem by realizing a projective representation of the translation group. The resulting Hofstadter spectrum encodes the nonperturbative response of the bands to flux. Depending on their topology, adding flux can enforce a bulk gap closing (a Hofstadter semimetal) or boundary state pumping (a Hofstadter topological insulator). In this Letter, we present a real space classification of these Hofstadter phases. We give topological indices in terms of symmetry-protected real space invariants, which reveal the bulk and boundary responses of fragile topological states to flux. In fact, we find that the flux periodicity in tight-binding models causes the symmetries which are broken by the magnetic field to reenter at strong flux where they form projective point group representations. We completely classify the reentrant projective point groups and find that the Schur multipliers which define them are Arahanov-Bohm phases calculated along the bonds of the crystal. We find that a nontrivial Schur multiplier is enough to predict and protect the Hofstadter response with only zero-flux topology.

11.
Proc Natl Acad Sci U S A ; 120(8): e2218997120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787357

RESUMO

Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat-band set just above the Fermi level that includes contributions from ordinary subbands with weak kinetic electron hopping plus a flat subband that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron-doped samples with formulas Sr2-xLaxFeSbO6 (0 ≤ x ≤ 0.3) were synthesized, and their magnetism and ambient temperature crystal structures were determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three subbands or combinations is responsible for the behavior has not been determined.

12.
Adv Mater ; 34(49): e2204113, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36193763

RESUMO

Topological materials discovery has emerged as an important frontier in condensed matter physics. While theoretical classification frameworks have been used to identify thousands of candidate topological materials, experimental determination of materials' topology often poses significant technical challenges. X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique sensitive to atoms' local symmetry and chemical bonding, which are intimately linked to band topology by the theory of topological quantum chemistry (TQC). Moreover, as a local structural probe, XAS is known to have high quantitative agreement between experiment and calculation, suggesting that insights from computational spectra can effectively inform experiments. In this work, computed X-ray absorption near-edge structure (XANES) spectra of more than 10 000 inorganic materials to train a neural network (NN) classifier that predicts topological class directly from XANES signatures, achieving F1 scores of 89% and 93% for topological and trivial classes, respectively is leveraged. Given the simplicity of the XAS setup and its compatibility with multimodal sample environments, the proposed machine-learning-augmented XAS topological indicator has the potential to discover broader categories of topological materials, such as non-cleavable compounds and amorphous materials, and may further inform field-driven phenomena in situ, such as magnetic field-driven topological phase transitions.

13.
Phys Rev Lett ; 129(11): 117602, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154402

RESUMO

We analytically compute the scanning tunneling microscopy (STM) signatures of integer-filled correlated ground states of the magic angle twisted bilayer graphene (TBG) narrow bands. After experimentally validating the strong-coupling approach at ±4 electrons/moiré unit cell, we consider the spatial features of the STM signal for 14 different many-body correlated states and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the Kramers IVC state and its nonchiral U(4) rotations do not exhibit any KD, while the time-reversal-symmetric IVC state does. Our results, obtained over a large range of energies and model parameters, show that the STM signal and Chern number of a state can be used to uniquely determine the nature of the TBG ground state.

14.
Phys Rev Lett ; 129(4): 047601, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939005

RESUMO

Magic-angle (θ=1.05°) twisted bilayer graphene (MATBG) has shown two seemingly contradictory characters: the localization and quantum-dot-like behavior in STM experiments, and delocalization in transport experiments. We construct a model, which naturally captures the two aspects, from the Bistritzer-MacDonald (BM) model in a first principle spirit. A set of local flat-band orbitals (f) centered at the AA-stacking regions are responsible to the localization. A set of extended topological semimetallic conduction bands (c), which are at small energetic separation from the local orbitals, are responsible to the delocalization and transport. The topological flat bands of the BM model appear as a result of the hybridization of f and c electrons. This model then provides a new perspective for the strong correlation physics, which is now described as strongly correlated f electrons coupled to nearly free c electrons-we hence name our model as the topological heavy fermion model. Using this model, we obtain the U(4) and U(4)×U(4) symmetries of Refs. [1-5] as well as the correlated insulator phases and their energies. Simple rules for the ground states and their Chern numbers are derived. Moreover, features such as the large dispersion of the charge ±1 excitations [2,6,7], and the minima of the charge gap at the Γ_{M} point can now, for the first time, be understood both qualitatively and quantitatively in a simple physical picture. Our mapping opens the prospect of using heavy-fermion physics machinery to the superconducting physics of MATBG.

15.
Phys Rev Lett ; 129(7): 076401, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018703

RESUMO

Twisted bilayer graphene (TBG) is remarkable for its topological flat bands, which drive strongly interacting physics at integer fillings, and its simple theoretical description facilitated by the Bistritzer-MacDonald Hamiltonian, a continuum model coupling two Dirac fermions. Because of the large moiré unit cell, TBG offers the unprecedented opportunity to observe reentrant Hofstadter phases in laboratory-strength magnetic fields near 25 T. This Letter is devoted to magic angle TBG at 2π flux where the magnetic translation group commutes. We use a newly developed gauge-invariant formalism to determine the exact single-particle band structure and topology. We find that the characteristic TBG flat bands reemerge at 2π flux, but, due to the magnetic field breaking C_{2z}T, they split and acquire Chern number ±1. We show that reentrant correlated insulating states appear at 2π flux driven by the Coulomb interaction at integer fillings, and we predict the characteristic Landau fans from their excitation spectrum.

17.
Nat Phys ; 18(7): 813-818, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855397

RESUMO

The crystal symmetry of a material dictates the type of topological band structures it may host, and therefore symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call 'quasi-symmetry'. This is the situation where a Hamiltonian has an exact symmetry at lower-order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine-tuning as they enforce that sources of large Berry curvature will occur at arbitrary chemical potentials. We demonstrate that a quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications.

18.
Phys Rev Lett ; 128(21): 217701, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687461

RESUMO

The discovery of flat bands with nontrivial band topology in magic-angle twisted bilayer graphene (MATBG) has provided a unique platform to study strongly correlated phenomena including superconductivity, correlated insulators, Chern insulators, and magnetism. A fundamental feature of the MATBG, so far unexplored, is its high magnetic field Hofstadter spectrum. Here, we report on a detailed magnetotransport study of a MATBG device in external magnetic fields of up to B=31 T, corresponding to one magnetic flux quantum per moiré unit cell Φ_{0}. At Φ_{0}, we observe reentrant correlated insulators at a flat band filling factors of ν=+2 and of ν=+3, and interaction-driven Fermi-surface reconstructions at other fillings, which are identified by new sets of Landau levels originating from these. These experimental observations are supplemented by theoretical work that predicts a new set of eight well-isolated flat bands at Φ_{0}, of comparable band width, but with different topology than in zero field. Overall, our magnetotransport data reveal a qualitatively new Hofstadter spectrum in MATBG, which arises due to the strong electronic correlations in the reentrant flat bands.

19.
Rep Prog Phys ; 85(8)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617909

RESUMO

The discovery of quantum many-body scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physics. In this review, we provide a pedagogical introduction to and an overview of the exact results on weak ergodicity breaking via QMBS in isolated quantum systems with the help of simple examples such as the fermionic Hubbard model. We also discuss various mechanisms and unifying formalisms that have been proposed to encompass the plethora of systems exhibiting QMBS. We cover examples of equally-spaced towers that lead to exact revivals for particular initial states, as well as isolated examples of QMBS. Finally, we review Hilbert space fragmentation, a related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic behaviors, and discuss its connections to QMBS.

20.
Science ; 376(6595): eabg9094, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587971

RESUMO

Topological quantum chemistry and symmetry-based indicators have facilitated large-scale searches for materials with topological properties at the Fermi energy (EF). We report the implementation of a publicly accessible catalog of stable and fragile topology in all of the bands both at and away from EF in the 96,196 processable entries in the Inorganic Crystal Structure Database. Our calculations, which represent the completion of the symmetry-indicated band topology of known nonmagnetic materials, have enabled the discovery of repeat-topological and supertopological materials, including rhombohedral bismuth and Bi2Mg3. We find that 52.65% of all materials are topological at EF, roughly two-thirds of bands across all materials exhibit symmetry-indicated stable topology, and 87.99% of all materials contain at least one stable or fragile topological band.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...